Rapid Cycling \textit{Brassica rapa}: A Novel Phytomining Plant

* Bergen County Technical High School, Engineering Dept., 504 Rt. 46 West, Teterboro, NJ 07608
**Bergen County Academies, Nano-Structural Imaging Lab, 200 Hackensack Avenue, Hackensack, NJ 07601

Materials & Methods

\textit{Brassica} rape plants were grown hydroponically in gold ion solution (50µM or 500µM HAuCl$_4$ in 50% standard Hoagland solution) or gold nanoparticle (AuNP) solution (5mg/L or 50mg/L gold nanoparticles in 50% standard Hoagland solution). After 14 days of growth, samples from the root, stem and leaf were collected and prepared for TEM analysis. TEM samples were fixed with 4% glutaraldehyde/2% formaldehyde in 0.2M sodium cacodylate buffer, post-fixed with 2% osmium tetroxide, dehydrated in a graded series of acetone, embedded and cured in epoxy resin. TEM sections were collected onto 200 mesh copper grids and imaged unstained with a JEOL JEM-2100.

Results & Discussion

AuNPs were only found in the root of the plant grown in 500µM HAuCl$_4$ in 50% standard Hoagland solution (Figure 1C). None of the plants grown in AuNP solution showed signs of gold nanoparticles in the roots (Figure 1D & E). The size and shape of AuNPs found in the root were similar to AuNPs synthesized by the Turkевич method (Figure 7) in the lab (Figure 2). Stem and leaf samples did not contain gold nanoparticles under any experimental condition (Figures 3 & 4).

Based on these findings, it is believed that \textit{Brassica} rape is capable of phytomining. Furthermore, since there were no nanoparticles found in the tissue of plants exposed to pre-formed nanoparticles, it can be concluded that the AuNPs found within the root tissue are a result of metal ion reduction by the plant. \textit{Brassica} rapa, with its accelerated lifecycle, has the potential to more efficiently decontaminate heavy metal ion polluted soil than other, slower-growing \textit{Brassica} species. Future studies will look to confirm the presence of AuNPs in the plant tissue using X-ray microanalysis. Studies will also be done to determine if additional metal ions can be reduced by \textit{Brassica} rapa.

References

Acknowledgements

Dr. Howard Lerner, Superintendent, Bergen County Technical Schools & Special Services
Andrea Sheridan, Assistant Superintendent, Bergen County Technical Schools & Special Services
Edmund Howard, Technology Director, Bergen County Technical Schools
Russell Davis, Principal, Bergen County Academies
Patricia Congro, Principal, Bergen County Technical High School
Dr. Judith Pinto and Carol Zepatos, Environmental Science Center, Bergen County Academies
The Young Science Achievers Program for their partial funding of this project.

Presented at Microscopy & Microanalysis 2011
August 7-11, Nashville, TN
Poster Number: 9 Paper Number: 81498